Моделирование листовых тел

План лекции

Общие сведения Листовое тело Обечайки Пластина Сгибы Подсечка Замыкание углов Отверстия в листовом теле Сгибание и разгибание сгибов. Развертка Штамповочные элементы

Назначение и возможности

В КОМПАС-3D возможно моделирование деталей, получаемых из листового материала с помощью гибки.

Листовое моделирование

Вызов панели

Листовое моделирование

Инструментальная панель

Обзор

Листовое тело может быть создано как самостоятельное тело или объединено с имеющимся телом.

Форма листового тела определяется его эскизом. Порядок построения листового тела зависит от того, какой выбран эскиз — замкнутый или разомкнутый.

Простая обечайка

Формируется путем выдавливания эскиза в направлении, перпендикулярном его плоскости, и добавления толщины получившейся поверхности.

Возможен уклон боковых сторон обечайки. Сгибы, формирующиеся в углах контура, в обечайке с уклоном могут иметь форму цилиндра или конуса.

Линейчатая обечайка

Линейчатая обечайка формируется путем соединения двух оснований линейчатой поверхностью и добавления к ней толщины. В качестве оснований используются эскизы произвольной формы и расположения.

В общем случае боковые грани обечайки — линейчатые, но в частных случаях они могут быть плоскими, цилиндрическими, коническими. Это зависит от формы и взаимного расположения эскизов, а также от того, как поверхность разбита на грани. При необходимости умолчательное разбиение можно отредактировать.

Линейчатая обечайка

Если смежные грани линейчатой поверхности не стыкуются гладко, то на месте стыка автоматически создается сгиб заданного радиуса. При пересечении соседних сгибов так же автоматически формируется освобождение угла.

Параметры

Параметры	Дерево	₽
Обечайка	0	Ë
	✓	×
Результат: Новое тело		
<u>Основание</u>	Эскиз:2 ×	Ц
Толщина 🔻	1 ±	\rightarrow
Радиус 🔻	5 ±	
	🗸 Постоянный радиус	
Способ: На расстояние	白げ	
Расстояние 🔻	10 ±	\rightarrow
Угол 🔻	0 🗸	←
^	Развертка	
Способ определения длины:	Коэффициент 🔻	
Коэффициент нейтрального слоя:	0.4	
	·,	
^	Кромки	
Кромки оснований: Перпендикулярно п		
	Стык	
Кромки стыка:		
Перпендикулярно п		
Смещение:		
В % от длины кривой	👪 👪 🗟	
76 от длины кривой	0	
	C	
¥	Своиства	

Параметры	Дерево	₽
Линейчатая обечайка	•	Ŀ
	✓	×
Результат: Новое тело		
<u>Основание 1</u>	Эскиз:3 ×	Ц
Основание 2	Эскиз:2 ×	Ц
Толщина 🔻	1 ±	\rightarrow
Радиус 🔻	5 ±	
^	Развертка	
Способ определения длины:	Коэффициент 💌	
Коэффициент нейтрального слоя:	0.4	
^	Кромки	
Кромки оснований: Перпендикулярно п	C C	
	Стык	
Кромки стыка: Перпендикулярно п	\$	
Зазор 🔻	1 ±	
Смещение: В % от длины кривой	*3 🛃 🔛	
% от длины кривой 🔻	88.616917	
^	Разбиение	
Автоопределение:	1	
^	Сегментация	
Сегментация:	1	
Единые параметры:	1	
Способ: По количеству сегме	▶ ⇒ ☆ ☆ メ	
Количество сегментов:	6	
~	Свойства	

Кромки оснований

Перпендикулярно плоскости листа

Совпадение с поверхностями оснований

-кромки оснований

—поверхность — Граница выдавливания

Совпадение с поверхностями оснований, способ «До объекта» (для простой обечайки)

Перпендикулярно поверхности листа

Кромки оснований

Параллельно друг другу

Обечайки

Смещение зазора

Доступно для обечаек на основе замкнутых эскизов.

Смещение характеризует положение точки в центре зазора относительно начальной точки контура в эскизе (для линейчатой обечайки — в эскизе первого основания). Начальная точка контура определяется системой автоматически.

b

ത

начальное

положение

смещение зазора на 20%

или на длину (a+b)

Сегментация

Дуги окружностей и эллипсов в контуре (контурах) обечайки можно сегментировать. Сегментация представляет собой замену криволинейных участков контура обечайки аппроксимирующими ломаными, состоящими из сегментов равной длины. В вершинах ломаных создаются сгибы заданного радиуса. В результате сгиб, соответствующий дуге в эскизе, заменяется набором сгибов

Сегментация

Сегментация

Если контур обечайки содержит более одной дуги, можно настроить сегментацию каждой дуги по отдельности.

Обзор

Пластина — плоский листовой элемент, приклеенный к листовой детали. Пластина формируется путем выдавливания замкнутого эскиза. Глубина выдавливания может быть произвольной или равной толщине листовой детали.

К созданной пластине можно добавлять другие листовые элементы: сгибы, отверстия, штамповочные элементы и т.д.

Обзор

Сгиб создается вдоль одного или нескольких ребер листовой детали. Ребро (ребра) должно быть прямолинейным и принадлежать внешней или внутренней плоской грани листовой детали.

Параметры

^ Развертка	
Способ определения Коэффициент 🗸	
Коэффициент нейтрального слоя: 0.4	
 Боковые стороны 	
Левая боковая сторона	
Способ: 💟 🗓 Уклон и угол слева	
Уклон слева 🔻 🛛 👻	
Угол на сгибе 🗙 0 💌	
Способ: ньо на	
Уклон и угол справа	
Уклон справа 🔻 🛛 👻	
Угол на сгибе 🗸 🛛 🗸	
	_
 Освобождение 	
Освобождение О	
Освобождение угла: О	
^ Свойства	
Наименование: Сгиб	
^ Отображение	
Способ задания: 📝 По исходному о 🔻	

Длина продолжения сгиба

Продолжение сгиба — часть листового элемента, примыкающая к сгибу с противоположной стороны от ребра, вдоль которого расположен этот сгиб.

Если сгиб строится по одному ребру, можно задать длины сторон продолжения сгиба по отдельности.

Длина продолжения сгиба

Задание длины способом **По внешней линии контура** и **По внутренней линии контура** доступно для углов от 0° до 180°.

Длина продолжения сгиба

Формирование продолжения сгиба до грани а) По двум сторонам отключено; б) По двум сторонам включено, для обеих сторон указана одна и та же грань листового тела в качестве границы

Боковые стороны

Управление боковыми сторонами сгиба а) углы на сгибе, б) уклон боковых сторон продолжения сгиба, в), г) углы на сгибе и уклон боковых сторон продолжения

Изменение ширины продолжения сгиба: а) увеличение, б) уменьшение

Сгиб по эскизу

Обзор

Сгиб по эскизу — элемент с несколькими сгибами, профиль которого определяется контуром в эскизе

а) эскиз сгиба, б) сгиб вдоль одного ребра, в) сгиб вдоль нескольких ребер

Сгиб вдоль цепочки ребер: а) соединенных вершиной, б) соединенных сгибом

Сгиб по эскизу

Ширина

Сгиб Вдоль всего ребра

а) исходное состояниемодели и эскиз сгиба,б) результат построения

Сгиб **От эскиза** а) в одном направлении от плоскости эскиза, б) в двух направлениях

Обзор

Подсечка

Обзор

КОМПАС-3D позволяет создать сразу два сгиба по прямой линии в листовой детали относительно плоской грани этой детали. Указанные линия и грань являются базовой линией сгиба и базовой гранью подсечки.

Подсечка

Обзор

Обзор

Замыкание угла — модификация двух смежных сгибов и их продолжений.

Смежными считаются сгибы, имеющие общее ребро, расположенное так, как показано на рисунке

Указание смежных сгибов

- общее ребро смежных сгибов (а),
- боковую грань (или ребро боковой грани) одного из смежных/примыкающих сгибов или его продолжения (б),
- грани, принадлежащие смежным или примыкающим сгибам (цилиндрические грани сгибов, плоские грани продолжений), или ребра этих граней (в).

Замыкание углов

Способы замыкания

Замыкание углов

Обработка угла

Продолжение замыкания

При выполнении операции замыкания можно замкнуть парные сгибы, примыкающие к сторонам замыкаемого угла. Для этого включите опцию **Продолжить** на Панели параметров.

Обзор

Вырез в листовом теле — формирует в листовой детали отверстие произвольной формы (для построения необходим эскиз), Отверстие в листовом теле — формирует в листовой детали круглое отверстие.

Отверстия в листовой детали

Способы построения отверстий

Для выбора способа построения отверстия используются кнопки группы **Тип**. Доступны следующие варианты:

- По толщине,
- На глубину,
- До грани

Способы построения отверстий

Листовой элемент, содержащий сгибы, может находиться в согнутом или разогнутом состоянии.

Для изменения состояния листового элемента служат команды Разогнуть и Согнуть в контекстном меню элемента в Дереве построения. После вызова одной из этих команд для листового элемента в его контекстном меню появляется другая команда. Для нескольких выделенных элементов могут быть доступны обе команды.

Разгибание и сгибание сгибов. Развертка

Способы построения отверстий

Для выполнения операции разгибания/сгибания сгибов листовой детали необходимо задать плоскость, которая останется неподвижной и в которой будет располагаться разогнутый/ согнутый сгиб (сгибы).

а) исходное состояние детали, б) результат разгибания сгиба 2 (при указании грани сгиба 1)

Разгибание и сгибание сгибов. Развертка

Развертка

Для отображения листовой детали (деталей) в разогнутом виде используется команда Развернуть. Команда доступна, если в модели существует хотя бы один листовой элемент.

Штамповочные элементы

Общие сведения

Буртик

Для создания штамповки, буртика или жалюзи необходим эскиз, построенный на внешней или внутренней плоской грани листовой детали. Грань, содержащая эскиз штамповочного элемента, считается **базовой гранью** этого элемента.

Жалюзи

Открытая штамповка

Закрытая штамповка

Сгиб

Обзор

Открытая и закрытая штамповки имеют практически одинаковый набор параметров и создаются очень похоже.

Форма штамповки определяется ее эскизом. Тонкостенный элемент, получаемый выдавливанием эскиза в направлении построения, образует боковые стенки штамповки.

Если эскиз штамповки выходит за пределы базовой грани, то штамповка обрезается плоскостью (плоскостями) соответствующей торцевой грани.

Параметры

Неподвижная сторона

Уклон боковых стенок

Скругление боковых ребер

Боковые ребра — ребра, образующиеся на стыках граней боковых стенок штамповки. При этом ребра, принадлежащие внутренним боковым граням штамповки, считаются внутренними боковыми ребрами, а принадлежащие внешним боковым граням — внешними боковыми ребрами

Радиус скругления равен нулю

Радиус скругления больше нуля

Жалюзи

Обзор

В качестве эскизов для жалюзи используются отрезки. Эскиз должен полностью находиться в пределах базовой грани элемента

Подрезанные

Жалюзи

Параметры

Параметры		Дерево		₽
Жалюзи			•	
тта	-20-			×
<u>Эскиз</u>	Укажите	эскиз		Ц
Задание высо Полная	4	4		
Высота 🔻	5		±	\rightarrow
Ширина 🔻	10		±	\rightarrow
Скругление основания:	1			
Радиус 🚽 основания	5		±	
	Способ			
Вытяжка		Тодрезка		
~	Свойства			

Жалюзи

Высота и ширина

Пределы допустимых значений высоты жалюзи

	Способ задания высоты	Пределы значений высоты
4	Полная	S < H < B, где H — полная высота жалюзи
₽	От грани	S < h <b -="" h="" s,="" th="" высота="" где="" грани<="" жалюзи="" от="" —="">
æ	Высота прорези	0.00 < A < B - 2 ⋅ S, где A — высота прорези жалюзи

Значение ширины *В* должно удовлетворять следующему условию: *B* > 2 · *S*, где *S* — толщина листового материала. Для вытянутого жалюзи значение ширины должно удовлетворять также условию *B* < *L*/2, где *L* — длина отрезка в эскизе жалюзи.

Обзор

Конфигурация буртика определяется эскизом. Эскиз, задающий положение и форму буртика, может содержать контуры и/или точки.

Если эскиз буртика выходит за пределы базовой грани, то он обрезается плоскостью (плоскостями) соответствующей торцевой грани.

Параметры

Параметры	Дерево	Q
Буртик	•	11
тта 🔺		×
<u>Эскиз</u>	Укажите эскиз	Ľ
Тип: Закрытый	🕙 🖄 🖄	
Форма сечения: Круглая	$\sim \sim \sim$	
Способ: Высота и радиус	బ ాద	
Высота 🔻	5 ±	\rightarrow
Радиус буртика 🔻	5 ±	
Скругление основания:		
Радиус основания 🔻	5 ±	
	- ×	
~	Свойства	

Обработка концов

Конец буртика — часть буртика, соответствующая крайней точке контура в эскизе. При выборе типа обработки Рубленый на Панели параметров появляется поле Зазор, в которое вводится величина зазора вырубки.

Закрытый

Форма сечения

Если в эскизе буртика есть контур, то буртик образуется движением сечения вдоль этого контура, а если в эскизе есть точка, то — вращением сечения вокруг оси, проходящей через эту точку

Способы построения круглого буртика

Способы построения U-образного буртика

Способы построения V-образного буртика

Обзор

Ребро усиления представляет собой тонкостенный элемент, сформированный в результате деформации сгиба. Ребро может быть создано на цилиндрическом или коническом сгибе.

В отличие от ребра жесткости, ребро усиления не мешает разгибанию сгиба, на котором оно создано. На развертке ребро усиления не отображается. После сгибания сгиба ребро усиления восстанавливается

Параметры

Положение ребра усиления

Для задания положения ребра усиления требуется указать, в какой точке его средняя плоскость пересекает ребро сгиба. Это можно сделать одним из способов:

- смещение от вершины сгиба
- указанием точечного объекта

Способы построения профиля

Форма сечения

U-образная

V-образная

Направление построения

Штамповочный элемент может быть направлен как в одну, так и в другую сторону от базовой грани. Прямым направлением построения считается направление наружу от базовой грани, а обратным — внутрь. Толщина листового материала при этом не учитывается, благодаря чему геометрические параметры элемента не зависят от направления построения.

Доступно в командах <u>Закрытая штамповка/Открытая штамповка</u>, <u>Жалюзи</u> и <u>Буртик</u>.

Направление построения

Основание штамповочного элемента — часть листовой детали, где штамповочный элемент соединяется с прилегающими к нему участками детали. Ребра основания — ребра, образующиеся на стыках граней боковых стенок штамповочного элемента и граней прилегающих к нему участков листовой детали. При этом ребра, принадлежащие внутренним боковым граням штамповочного элемента, считаются внутренними ребрами основания, а принадлежащие внешним боковым граням внешними ребрами основания.

Направление построения

Ребра дна — ребра, образующиеся на стыках граней дна штамповочного элемента и граней его боковых стенок. При этом ребра, принадлежащие внутренним боковым граням элемента, считаются внутренними ребрами дна, а принадлежащие внешним боковым граням — внешними ребрами дна.

Доступно в командах <u>Закрытая штамповка</u>, <u>Буртик</u> (с U-образной формой сечения) и <u>Ребро усиления</u> (с U-образной формой сечения).